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Abstract—A laminated material is one of the few composite systems for which the effective consti-
tutive behavior can be determined exactly. This is well known for laminated composites with linearly
elastic phases in prescribed volume fractions. For these composites, explicit expressions for the
effective moduli have been available for at least 30 years. However, it appears that corresponding
expressions for the effective energy functions of laminated composites with phases exhibiting
nonlincar constitutive behavior are currently unavailable. In this paper, we make straightforward
use of a new variational procedure, recently developed by one of the authors, to obtain simple
expressions for the etfective energy functions of laminated composites with isotropic ductile phases
in prescribed volume fractions. The same expressions are given an alternative derivation, starting
directly from the classical variational principles. Explicit results are then computed for ductile/brittle
systems, such as aluminum/alumina laminates. and also for laminated composites made up of two
perfectly plastic phases with different yield stresses. The results—which are representative of other
anisotropic geometries, such as fiber-reinforced solids—exhibit a strong coupling between different
leading modes that is enhanced by material nonlinearity.

1. INTRODUCTION

This work is concerned with the determination of the effective constitutive behavior of
laminated composite materials with plastically deforming phases in prescribed volume
fractions. We will deal with the exact cffective behavior of such materials, and therefore,
we will exclude from our consideration the so-called approximate theories of laminated
plates (Christensen, 1979). In the context of lincar elasticity, laminated composites have
been studied extensively in the literature. Postma (1955) and White and Angona (1955)
concerned themselves with the study of two-phase, periodic laminates in connection with
wave propagation in stratified media. Backus (1962) extended their results to multi-phase,
nonperiodic composites, again in the wave propagation context. The extension to aniso-
tropic layers was considered by Walpole (1969) for aligned, transversely isotropic phases,
and by Chou et al. (1972) and Pagano (1974) for more general anisotropy of the phases.
Recently, Norris (1991) has developed alternative expressions for the effective moduli tensor
of laminated composites with generally anisotropic phases, exploiting the interior and
exterior projection tensors of Hill (1972, 1983). Other related works include iterative
formulae developed by Francfort and Murat (1986) in the context of linear elasticity
allowing simple expressions for the effective moduli of multi-sandwich structures (laminates
embedded within laminates of different orientations). These microstructures are of theor-
etical value in the demonstration of the optimality of bounds for the effective properties of
composite materials with more general microstructures {see Kohn (1987) and Lipton
(1991b)]. In spite of the large level of activity for linear laminates, briefly summarized
above, the theory of nonlinear laminated composites does not seem to have been developed
very much. To the knowledge of the authors, the only work thus far in this direction is a
generalization of the Francfort-Murat formula for simple laminated materials with one
nonlinear phase and one linear phase duc to Kohn (1990) and Milton (1990). Nonlinear
results do exist, however, within the context of the approximate laminated plate theories.
The justification of the study of nonlinear laminated composites may be partially
understood in terms of the following considerations. First, it is a configuration of practical
importance : for instance, the use of linear laminated theories in geophysical applications
is well known, but it is also known that the properties of the materials composing the
surface of the Earth may exhibit nonlinear constitutive behavior, particularly, deep within
the surface, where the materials are subject to large compressive stresses. Second, we will
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find that the laminated microstructure is tllustrative of the significant coupling that may
arise in nonlinear, anisotropic materials between different loading modes. This nonlinear
coupling is also observed in other more complex microstructures, such as fiber-reinforced
composites. Third. the laminated microstructure corresponds to the simplest possible type
of anisotropic composite with nonlinear phases. in the sense that exact results may be
obtained for its effective properties, as will be shown herein. In this connection. the present
work should be considered in the light of a research program attempting to characterize
the effective properties of nonlinear composites in general. Thus far, methods have been
developed for understanding the effective behavior of nonlinear composites by Talbot and
Wilhis (1985). and by Ponte Castarieda (1991a. 1992). These methods. although different in
essence, can be shown to yield exactly the same results in some cases. but the new method
is more general than the first in that it can be used to obtain estimates other than Hashin-
Shtrikman bounds and self-consistent estimates [see Willis (1991) and Ponte Castatdeda
(1992)]. Bounds and estimates for the effective properties of nonlinear composites with
isotropic overall symmetries have been obtained by Ponte Castaneda and Willis (1988).
and Willis (1989) making use of the Talbot-Willis method, and by Ponte Castancda
(1991a. b) making use of the new method. Results for fiber-reinforced composites have also
been developed very recently by Talbot and Willis (1991). and by Ponte Castafieda (1992)
and deBotton and Ponte Castanieda (1992).

The rest of the paper is structured as follows. In Section 2 the definition of effective
propertics is reviewed, and their variational characterization is given in terms of both the
classical and new variational principles of Ponte Castaneda (1991a. 1992). In Section 3
general nonlinear laminated composites are considered, and general formulae are derived
in Scctions 4 and 5 for the effective propertics of incompressible and compressible laminates,
respectively. Additionally, in Section 6, more specific results are given for two-phase lami-
nates. In particular, the cases of ductile materials reinforced by linearly clastic layers, and
of laminates with two perfectly plastic phases are considered. Finally, some additional
refevant results are given in four appendices; in particular, in Appendix 1V, an alternative
derivation is given of the results of Sections 4 and 5 using the classical variational principle.

2. EFFECTIVE PROPERTIES AND THEIR VARIATIONAL CHARACTERIZATION

In this section, we are interested in the characterization of the effective, or overall,
constitutive behavior of composites materials with plastically deforming phases. For our
purposcs, & composite is a heterogeneous material with two distinct length scales: onc
mucroscopic, L, describing the gross size of the specimen and the scale of variation of the
applied loading conditions, and a microscopic scale, /, characterizing the size of the typical
inhomogeneity, such that / « L. More precise definitions can be found in the review article
by Kohn (1987).

For simplicity. the constitutive behavior of the phases will be characterized by the
deformation theory of plasticity, or equivalently by nonlinear infinitesimal elasticity. How-
ever, with minor changes in notation. the results of the analyses of this paper will also be
relevant to the high-temperature creeping behaviour of composite laminates. Additionally,
the results can be used in an approximate fashion to suggest yield functions for laminated
composites in the context of the incremental theory of plasticity, as suggested by Duva and
Hutchinson (1984). and other investigators.

In the following description of effective properties, the composite is assumed to occupy
a domain of unit volume Q, with boundary ¢Q. Then, the nonlincar plastic behavior of the
composite is characterized by means of a complementary-energy density function, U(x, 6).
depending on the position vector x and the stress field ¢(x), in such a way that the strain
field g(x) is given by

g(X) =~ " (1)

Following Hill (1963). we define the ¢ffective constitutive behavior of the heterogeneous
solid in terms of the analogous relation
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where & denotes the mean value of the strain field over Q. and U refers to the normalized
(recall that Q has unit volume) complementary-energy function of the solid when subjected
to the uniform constraint boundary condition

on =gdn. XeclQ. 3)

where n is the outward unit normal to ¢Q. and @ is a constant, symmetric tensor. We recall
that under this type of boundary condition, the mean value of the stress over Q is precisely 4.

The effective complementary energy function of the composite. U, can be obtained
directly in terms of the principle of minimum complementary energy by means of

C(&) = min J U(x, o) dr, @)
ecS(a) JQ
where
S(@) = {o|V-6 =0in Q. and on = én on °Q} (5)

is the set of statically admissible stress ficlds. Note that the first set of conditions in (5) are
the equilibrium equations, and that the minimizing conditions (Euler -Lagrange equations)
of (4) are the compatibility equations. Further, composite materials typically exhibit sharp
interfaces across which the material propertics are discontinuous, although the phases are
assumed to be perfectly bonded. Therefore, across such interfaces, the cquilibrium equations
must be reinterpreted in terms of continuity of the traction stresses, and correspondingly
the compatibility equiations must be replaced by continuity of the tangential components
of the strain tensor.

We note that, given relation (2) in terms of U, the problem of characterizing the
effective behavior of the composite reduces to that of determining . However, while in
principle U can be computed from (4) ; in practice, this variational principle is not very
useful for two reasons. First, usually the microstructure of a typical composite is not
completely specified ; and second, the problem described by (4) is a nonlinear one on
account of the nonlinear behavior of the constituent phases. For the problem of interest in
this paper, the first issuc is not a concern because the phase volume fractions suffice to
characterize the microstructure of a laminated composite material. However, the second
issuc presents real difficulties. For this reason, we describe next a new variational principle,
introduced recently by Ponte Castaneda (1991a), which deals precisely with the problem of
constitutive nonlinearity. This is accomplished by expressing the effective energy function
of the nonfinear composite in terms of a variational statement involving the effective energy
functions of the class of linear comparison composites. Thus, the new variational principle
allows the extension of well-known results for linear composites to corresponding results
for nonlinear ones. In this paper, we will make use of this variational principle, and of well-
known results for the effective propertics of linearly elastic laminates, to determine the
effective constitutive behavior of ductile laminates. Before proceeding with this task, we
briefly review the new variational principle.

The new variational principle for the effective energy of the composite U is obtained
by means of the Legendre transformation, applied to a modified set of variables. We will
assume that the heterogeneous solid is locally isotropic, such that

U(x.0) = y(x: 7. 0m), (6)

where  is a non-negative function. satisfying the condition that (x; 0. 0) = 0 for all x.
Additionally, y is convex in the variables [¢f. (A2)]
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On=1itre and t,=_ lo'-qa’ (7)

denoting the mean and effective (in their plasticity usages) stresses. respectively, where
o’ = g —a_lis the stress deviator tensor. We note that form (6) is nor the most general form
for the energy function of a nonlinear isotropic solid (we could also have dependence on
the determinant of &). but this form 1s still general enough to cover the usual plasticity
models of interest here. Further, we will assume that the growth in £ as the magnitude of
the stress tensor becomes large is stronger than quadratic. This is of course consistent with
the ductile behavior of the material.

The new variational principle is obtained then in terms of the following expression for
the energy-density function of the heterogeneous solid. namely,

U(x.o) = max (UM, 0) =~ (X g, Ky) s (8)

Hy-Rg 2

where U, is the energy—density function of a linearly elastic comparison solid with shear
modulus g,. and bulk modulus x,. such that

1, I,
Ug(x.6) = -~-10+ Tins (9)
! ity 2Ky

and where

V(x; pg, k) = max [Uy(x.0) = U(x, 6)}. (1)

(Note that the maximum in the above function is usually bounded, because of the stronger
than quadratic assumption on U.) These expressions are obtained by means of the changes
of variables, v, = 17 and v, = g}, which lead to the detinition of a nonnegative function /.
such that

S5t ) = (Xt 0,). (1

Then, expression (10) is nothing more than the Legendre dual of /7 in fact, we have that
V(X gty Ko) = (X3 ey Pa)s With p, = 1/(2u4) and p, = 1/(2x). Here, f* is the Legendre
transform of f, given by

./-*(X; Pes pm) = ,mai(() {I’cl.c +pml‘m —/(\ Ve l.m):\ (12)

and (8) is a statement of Legendre duality for conrex f (i.e. f** = f. but written in terms
of U and V). For details, we refer the reader to Ponte Castaneda (1992).

The new variational principle is then obtained essentially by inserting expression (8)
for U into the principle of minimum complementary energy (4), and interchanging the
order of the minimum over the set of admissible stresses with the maximum over the
comparison moduli. The result may be expressed in the form (Ponte Castaneda, 1992)

U@G) = max {00(5)—[ V(x: po(x). Ku(-‘))d-\‘}. (13)
Halx)agix} 2 0 [9]
where
U,(é) = min { Uy(x. o) dx (14)
aeS(a) J(1

is the effective energy of the linear comparison composite. We emphasize that expression
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(13) is a variational principle in its own right since it involves an infinite-dimensional
optimization over the set of nonnegative functions p,(x) and xy(x). Thus, even if we had
an explicit expression for the effective energy function of the linear comparison composite
C, [not an easy calculation in general for arbitrary puy(x) and x,(x)]. the above variational
principle would still be difficult to implement. However, we will see that for a laminated
composite. the above problem simplifies dramatically. Similarly. it was shown by Ponte
Castafieda (1991a, 1992) that the above vanational principle can also be utilized in an
approximate fashion to compute bounds for the effective properties of nonlinear composites
with more general microstructures. Additionally, in the same references. dual versions of
(13) are also given in terms of the minimum potential energy of the composite ; however,
in this paper we prefer to use the above formulation due to the fact that it is easier to
express the stress/strain relation for a ductile material in terms of the complementary
energy—density function U’ than in terms of its Legendre counterpart, the energy-density
function W = U*.

3. APPLICATION OF THE NEW VARIATIONAL PRINCIPLE TO A NONLINEAR
LAMINATED COMPOSITE

In this section, we specialize the general formulation of the previous section to the
case of laminated composites. Such materials consist of 7 homogeneous, isotropic phases
occupying nonintersecting layered regions Q'(r = 1.2.....n), with union Q and with
normal n. The complementary encrgy-density function for the laminated material is then
expressible in the form

U(a, x) = Z " (xm)U" (o). (15)

r=|

where ¥ (x+m) (cqual to | for x in phase r, and 0 otherwise) is the characteristic function
of phase r, and U"(a) = ¢“'(z,,6,,) is the corresponding homogeneous, isotropic encrgy -
density function. Also the volume fraction ¢ of cach phase is determined by the cor-
responding characteristic functions x” via the relation

= J 2" (x-n)dx. (16)
Q

We remark that a laminated composite with perfectly bonded, isotropic phases possesses
transversely isotropic symmetry (with transverse direction n). In some sense, it represents
the simplest composite material with transverse isotropy: other examples of practical
importance include fiber-reinforced materials with isotropic constituent phases. These will
be considered elsewhere. Because of the particular type of anisotropy involved in laminated
composites, we have included in Appendix A a brief summary, largely after Walpole (1981),
ol the appropriate invariants and other useful definitions for transversely isotropic materials.

The computation of the eflective energy-density function of a laminated composite is
made casy by the following property of laminated composites. [f the thickness of the typical
tayer is small compared to the size of the laminate (i.e. if the laminate—Ilinear or nonlinear—
is a composite in the sense defined in Section 2), then, away from a boundary-layer region
close to the boundary of the composite, the ficlds are constant within each layer (a different
constant in each layer). Therefore, the problem of determining the effective encrgy function
of a laminated composite reduces to that of determining the constant fields within each
phase of the composite by imposition of the appropriate jump conditions (continuity of
traction stresses and tangential strains) across the interfaces between the different layers,
as well as the averaging conditions stated in Section 2. Thus, the problem of determining
the effective energy function of a laminated composite, unlike the corresponding problem
for a gencral composite, simplifies to an algebraic one. Although. in principle, the resulting
problem can always be solved; in practice, it may be difficult to obtain explicit results

SAS 29:19-8
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because the jump conditions take the form of complicated sets of nonlinear algebraic
equations. However, if the composite is made up of linear phases (with quadratic energy
functions in each phase), the jump conditions are also linear and they can be solved in
closed form., as discussed in Section |.

The results for the effective energy functions of linear laminated composites are given
in the next two sections: in the balance of this section. we make use of the new variational
principle (13) to determine an exact expression for the effective energy function of a
nonlinear laminated composite U, written in terms of the effective energy functions U, of
the class of linearly elastic comparison laminates. This is accomplished by noting that, for
a laminate, the minimizing comparison moduli functions uy(x) and x,(x) in (13) must be
constant within each phase. Therefore, it suffices to optimize with respect to the set of
constant [over each phase r(r = 1....,n)] comparison moduli. 4§’ and . Thus, we have
that

Ui@) = max {Un(&)— Y, et V“"(ui:’.xﬁ:’)}, (17)
#y &y >0 s=1
where, from (10).
V(rl (r) .ir) . l 2 l 2 (r)
(0" KG') = max § =5 te+ 55 0n =¥ (e 00) ¢ (18)
T T <=fy LKy

and where U, is the effective energy-density function of a lincarly elastic laminated material
made up of n phases in volume fractions ¢, with shear and bulk moduli, x# and &{’.
respectively.

On the face of it, expressions (17) with (18) for the effective energy function of a
nonlincar laminated composite do not appear to offer much of an analytical advantage
over the standard procedure of determining the stress fields within cach phase (by solving
the appropriate nonlinear jump conditions) and putting them directly in the complementary
energy principle (4). This is due to the large number of optimizations involved in expressions
(17) and (18) (i.c. a total of 4n optimizations for an n-phase laminate). However, we shall
see in the next two sections that application of the particular form for the effective energy
function of a lincarly elastic laminate in (17) leads to a simpler optimization problem for
the effective energy function of the nonlinear laminate. Further, we observe that, from a
computational point of vicw, it is generally easier to minimize (or maximize) functions than
it 1s to solve nonlinear sets of equations, and therefore, the methods developed in this paper
are computationally superior to the standard procedure of solving systems of nonlinear
equations (arising from the jump conditions). In Section 4, we begin by considering the
simpler case of a laminated composite with incompressible, isotropic phases, and in Section
5, we tackle the more complicated problem of a general laminated composite with com-
pressible, isotropic phases.

4. THE INCOMPRESSIBLE LAMINATED COMPOSITE

In this section, we deal with the special case of laminated composites with incom-
pressible, isotropic phases. In this case, the encrgy—density functions of each phase take the
simpler form U'(g) = ¢”(z.). Then, relations (17) and (18), expressing the effective energy
function U of the nonlinear laminate, reduce to

- - n . | R
U(e) = max {Un(&)— 2 V""(u‘a’)}' and VO (uf') = max {277'""5_‘1’")(“)}’
r Te 0

Hy >0 |

(19.,20)

where U, now refers to the effective energy—density function of a linearly elastic laminated
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Fig. 1. A two-phase laminated material.

material composed of n incompressible phases with shear moduli 4’ in prescribed volume
fractions ¢"”.

The effective energy—density function of the linear (incompressible) comparison lami-
nate U, may be computed from the general results of Walpole (1969). specialized to the

case of incompressible, isotropic phases. We obtain
_ L A
Uy(oa) =7~;_['“'(T;,'+TJ)+ 57 JTas n

where the overbars on the moduli denote volume averages (e.g. fio = Z7_, ¢ u’), and
where T, 7, und 7, are the three transversely isotropic invariants of the applicd stress tensor
& (which is trace-free) corresponding to the three independent modes for an incompressible,
transversely isotropic, lincar material (sce Appendix A and Fig. 1). They are the transverse
shear stress [(AS5),]. the longitudinal shear stress [(AS),] and the deviatoric stress [(AS), , and
(A12)]. respectively. We note that the three independent modes for a general incompressible,
transversely isotropic material reduce to two independent modes for an incompressible
laminated composite (since the transverse and deviatoric modes have the sume effective
response). Note further that, because of the identity 77 = 7 +7; + 1, from the scction on
incompressible materials in Appendix A [(A6),), we arc able to rewrite the first term in
brackets in (21) in the form (72 —73).

With expression (21) for J,, we can now return to the computation of U, implied by
(19). In this connection, we find that the following identity, proved in Appendix B, is useful
in reducing the number of optimizations, namely,

. n c(:)
= min {Z (_‘)(l—w""’):}, (22)

1
Ha Wi =0 =1 Ha

where the (constant) optimization variables w”(r = 1,...,n) are required to satisfy the
constraint @ = 0. Then, substituting (21), together with (22), into (19) leads to the result

~ . n l
U(6) = max min | L2 ey 9
@ w'>0 oGm0 {'Z‘I ¢ [2#3” ) v (ﬁ‘o )]}' 23)
where
9 = \/(fg.*.fj)(l —oY i 24)
We note that, by definition, the functions — V' (u§) = — (f)*(1/(2u$)) are concave in

1/(us'). and similarly the variables ' are convex in w". Therefore, by the Saddle Point
Theorem (Rockafellar, 1970, Corollary 37.3.1), we are allowed to interchange the order of
the maximum and the minimum in (23). Further, it follows from (8) fassuming convexity
of /. where f“'(v,) = ¢'(z.) with ¢, = 12 see (11)] that
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1
'//H’(T) = max {74-_“ (f) I A m( :;‘)} (25)

>0 (<fy

Therefore. we conclude from (23) that

(7(6') — min {Z C(x‘ill/(\')(t(\'))}. (26)

wh=0 s

where the variables t™ are given by relations (24). Evidently. this form is much simpler
than the original form given by (19) and (20): it involves an n-dimensional constrained
optimization in place of the 2n-dimensional optimization problem implied by the original
form. However, the lincar constraint @ =0 for the n optimization variables ©"
(r=1.....n) can be embedded into the optimization problem (26) by letting the nth
variable w'" be expressed in terms of the other n— 1 variables w” (s = I.....n—1) via

" = — Y oo 27N
¢

With this modification, the problem (26) reducces to an (# - 1)-dimensional optimization
problem over the unconstrained variables '™ (s = 1, ... n—1). For instance, tor the case
of a two-phase laminated composite, the problem (26) reduces to the one-dimensional
optimization problem

(&)= min {¢ o/ — W) (F T+ 7] + I + ) E )+ (28)

which ts expressed in terms of one (unconstrained) optimiz;llion variable w. Here, we have
made the following identifications, 0" = ¢"Pw and ' = — .

Finally, we remark that simple expressions for the dkmvc stress/strain relations of
the nonlincar transversely isotropic laminated composite may be obtained by means of the
results of Appendix C. These relations may be written in terms of the incompressible,
trunwcrs‘cly isotropic invariants of the average strain tensor g, namely, the transverse shear
strain §,, the deviatoric shear strain 7, and the longitudinal shear strain 7. These strain
invariants are defined in Appendix A, and are completely analogous to the corresponding
(incompressible) transversely isotropic invariants of the average stress. Thus, with the help
of relations (C7), we may write

- i l dll/l” . f

Tp = thm(l '3 g ( ())]72‘,"

~ [ i I dl try . fl‘

= i Zl (r'(l ot )) f‘(}) d-l'i’) (7' ))J i

- [ " | d'//(r) .

.I’n = Zl (( ‘“, i “ ( -t )) 2 (29)

where 7 = ("), and where the variables & arc the optimized values of the w"

from (26). We note that for the nonlinear laminated composite. there is full coupling
between all the distortional (shear) modes. This is different from the situation for the
corresponding linear laminated composite {see (21)]. where all three modes are uncoupled.
As we will see in the ensuing discussions. this inter-mode coupling is one of the intrinsic
features of laminated (and other anisotropic) nonlincar composites.
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5. THE COMPRESSIBLE LAMINATED COMPOSITE

With the insight gained in the previous section, we attempt in the present section to
obtain corresponding results for n-phase laminated composites with nonlinear, isotropic,
compressible phases. In this case. we can apply the results (17) and (18) from Section 3
directly : we only require an expression for the effective energy function U, of the linearly
elastic laminate with isotropic, compressible phases in prescribed volume fractions. This
energy function may be computed directly from the results of Walpole (1969) for the
transversely isotropic moduli of linearly elastic laminated composites. The final result may
be written in the form

0y(3) = U,(6)+ U:(3). where U,(5) =1+ 2 (30.31)

N 3K, -;t‘,)_ . |[< 3 ) 1<3x0—2y0)2] \
U:(0) = -6, — 66+ s ]+ | ———] 6. (32
1) 21, 7 o (3’\0+4l‘0 2 \3xo+4uo o \3K9 +4u, 6. G2

with ny = 9K to/(3rg+4pe), and where 6, d,, T, and 7, are the four transversely isotropic
invariants (up to quadratic in order) of the applied stress . They denote, respectively, the
in-plane hydrostatic stress, the normal tensile stress, the transverse shear stress and the
longitudinal shear stress (see Appendix A and Fig. 1). The reason behind the above splitting
of U, lies in the similarity between the first part of (30), as given by (31), for the distortional
(shear) modes of the compressible laminate and relation (21) for the incompressible com-
posite (with 77 + 7] replaced by 7). Thus, it follows immediately that

N
= -
@

J
TN
3]
T~
=1
N——
]

n .5}
(&) = min {Z ¢ i (1 =) E +11 ]} (33)

W e, =0 /

where the o!” are the corresponding optimization variables, and they are subject to the
constraint o, = 0. The sccond part is more complicated, but it can be shown by straight-
forward computation that, if 6, # 0, U,(a) may be represented in the form

- . " () .(\')
Uxé) = min {Z fj;; [, — (1 —wihd, ] + Z gy — 3. +3(1 —w“’)ap]l}, 34)

wi.dn=0 (T} Opty

where the optimization variables w} are also subject to the constraint @, = 0.
By putting together relations (33) and (34), we arrive at the following expression for
the linear comparison laminate

- i n ‘( (r)
Vo) = jin { L 5 W+ ) 3 05’ } (35)
e e .|~ s=|

Wl iy = 0

where

T = \/(l—-u)i") rp+t + [a —( —w"’)a,,] and ol = {6, + (1 —wl)d,. (36)

We note that this result is reminiscent of the type of result that one would expect to arise
directly from the principle of minimum complementary energy. That this result is indeed
directly obtainable from the principle of minimum complementary energy is demonstrated
in Appendix D.

Then, following a procedure similar to the one followed in the development of
expression (26) for the effective energy function of the nonlinear, incompressible laminated
composite, but making use of (17) and (18). we arrive at the following expression for the
effective energy function of the nonlinear laminated composite
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iy ,HII’I
e

E(&) = n}m { C le/m(f“’ O’M }‘ (37)

.:(

Gy =g =0

)

where 1" and ¢y are given by (36). Here, we have made use of the Saddle Point theorem
allowing the interchange in the order of the minimum over the w!”. ! variables with the
maximum over the comparison moduli 4 and «. We note that form (37) for the effective
energy function U of the nonlinear laminated composite is a direct generalization of form
(33) for the effective energy function U, of the linear comparison laminate. We also note
that while the distortional and dilatational modes are not coupled in the linear laminated
composite {although the dilational modes are coupled among themselves. as (32) shows].

all four modes are strongly coupled for the nonlinear laminated composite.

Having obtained the simple form (37) for the effective energy function of a nonlincur
laminate by means of the new variational principle, it can be demonstrated that the same
result may be obtained directly from the principle of minimum complementary energy. This
alternative derivation of (37) is given in Appendix D. We note in this connection that while
the derivation of Appendix D may be physically more appealing than the above derivation,
in this paper we have chosen to emphasize the derivation based on the new variational
principles for the following reasons. The derivation based on the principle of minimum
complementary encrgy depends on the fact that the fields are constant within different
phases in the laminated composite ; however, for a more general microstructure, such as a
fiber-reinforced composite, the fields are no longer constant within the phases, and the
minimum complementary energy approach would not work. On the other hand, deBotton
and Ponte Castarieda (1992) have made use of the new variational principles to obtitin
expressions analogous to expressions (36) and (37) tor the effective energy functions of
nonlincar fiber-reinforced composites. Thus, the approach based on the new variational
principles is more general and that is the reason for emphasizing the new approach, even
in the stmple case of a laminated composite, where the new approach is not strictly required.
In Appendix D, we also show that an alternative form of (37) is possible, which is not
subject to the 6, # 0 restriction, although we note that the above form is stil valid in the
limit as 6, — 0 (it is just not valid in a pointwise sense at 6, = 0, because the optimizing
variables ) become unbounded in that limit).

The new representation for the effective energy function of a nonlincar laminated
composite U can be seen to involve only a 2n-dimensional optimization problem with two
lincar constraints. This is major reduction in order compared with the original expressions
(17) and (18) involving a 4n-dimensional optimization problem. However, as noted in the
previous section, further reductions are possible {to a 2(n— 1)-dimensional optimization
problem] by embedding the lincar constraints directly into the optimization problem (37).
For example, for the case of a two-phase composite, we obtain a result involvim, only u
two-dimensional optimization problem prescribed in terms of the variables o, o, via

- : 1 1 | | Nl NSRBI
L(()’) = min {(J }lpl ,(ti g x‘n))+(' Z’ ’ T )y (38)
1 M 2 S
where r‘“, sl and 17, ¢\ are given by relations (36) with ol = M, 0l = =P,
I
= Pw, and oF = —c M,

Finally, we remark that simple expressions for the effective stress/strain relations of
the transversely isotropic laminated composite may be obtained by means of the results of
Appendix C. These may be written in terms of the transversely isotropic invariants of the
average strain tensor £, the in-plane hydrostatic strain £, the normal tensile strain &, the
transverse shear strain 7, and the longitudinal shear strain 7,. These are defined in Appendix
A. and are completely analogous to the corresponding transversely isotropic invariants of
the average stress. Thus, with the help of relations (C8), we may write

[ cy'” Loy oL
& = ¢ Z (- ‘m){?— Elﬁm i 0w ) + (1 =), — 6ol 75 e (1. 6m) |-

r=|

I o ww ” i 5¢,(r) ) .
s o= H 2(r} Ay =y (r) rr)
Eiak P2 [ A
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} n , 1 ew(r) =t fn

where 7 = (@, &%), 6 = (D)), and where &, @'Y are the optimized values of

o, o} from (37). We note that in this form, the coupling between the distortional and
dilatational modes in the nonlinear material become evident since 7. 7, depend on §,. 6,.
and, conversely, &, £, depend on 7, 7.

6. APPLICATION TO LAMINATED COMPOSITES WITH POWER-LAW CONSTITUTIVE
BEHAVIOR

In this section, we specialize the results of Sections 4 and S for three classes of laminated
composites. The first subsection deals with the case of an incompressible laminated material
made up of layers of a phase with “linear plus power-hardening™ constitutive behavior,
reinforced with stiffer layers of a linear-elastic material. In the study of these incompressible
laminates, we will emphasize the coupling between different distortional loading modes
arising as a consequence of nonlincarity and anisotropy in the laminates. The second
subsection is dedicated to the study of a compressible, aluminum/alumina laminate, and
the understanding of the dilatational modes is emphasized in this case. The third subsection
deals with an incompressible laminated composite made up of two rigid/perfectly plastic
phases with different yield stresses; it is interesting to note that, in this special case,
completely explicit results arc obtained for the effective yield function of the laminate.

6.1. Incompressible luminated composites

In this subscction, we consider an incompressible, two-phasc laminated composite
characterized by the following constitutive laws for the two isotropic phases. Phase | is
governed by “lincar plus power-hardening™ constitutive behavior described by the energy-
density function

\/)-t, 9 \"
Y () = f FV(s)ds, where F'"(s) =g, {_s_ + [(_s_) - (&) ]H(s—a,)}.
0 Gy o Co

(40,41)

Here H is the unit step function (equal to 0 when s < o, and to 1 otherwise), and &, g, are
strain, stress normalization factors such that /ey = 3u'", with u'" denoting the shear
modulus of phase 1. Then, the function F'" represents the uniaxial stress/strain relation of
phase | under simple tension loading conditions. Thus, the behavior of phase 1 is linear
when the uniaxial stress is lower than the yield stress, 6,. and is linear plus power-hardening
for stresses larger than o,. The factor \/ 3in (40) is needed in order to fit the isotropic stress
invariant 7. to the uniaxial case. Phase 2 is linear and governed by the quadratic energy—
density function

'Z_E'ﬁ Tczs (42)

¢(2)(rc) =

where u? is the shear modulus of the phase.
With the above constitutive behavior for the two phases (1 and 2), which are prescribed
in volume fractions (1—c'®) and c?, respectively, the effective energy—density function of

the incompressible laminated composite may be expressed in dimensionless form via the
relation
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Fig. 2. The relations between the longitudinal shear stress 7 and stratn 7, of the incompressible,

nonlincar laminate (continuous lines), and the reference hnear laminate (short-dashed lines) for three
different values of the other stress mode . 1.1, =0, fr, = 2and 71, = 5.

(5) ity T, o, p” .
N P 9 (43)
Ty Tog Ty Ty M

where the specific form of the function G is determined from (28). and t, = ('i5,.

. \
o 73 . . . 1)
Yo = ke S0 that o, = 2

. Then, the relations between the three (incompressible)
transversely isotropic stress nvariants and the corresponding strain invariants may be
computed from (29). These relations are presented in Figs 25 for the following values of
the four parameters appearing in (43):

b=, =S5, n=3 and =02
a, /l

We recall that there are only two independent modes for the incompressible laminated
composites ; they are the longitudinal shear stress £, and the tollowing combination of the
other two shear modes \,/ff\+ff, (i.e. the transverse and deviatoric shear modes, respece-
tively). For simphcity, we will refer to this combination of the two modes at 7 and to the
corresponding combination of the strain modes, V’/',"f,+‘,".2.. as 7. Thus. it suflices to consider
the relations among the stress modes 7, 7 and the strain modes 7,. 7 in order to have a
complete description of the constitutive behavior of the incompressible laminate. In order
to highlight the etfect of nonlincarity, results are included in Figs 2-5 in the form of short-

r'/ro 20 — v v
”t.’)/um:j
d¥=02
n=3
15 b 4
)
//
10t / 4
e
T/t =1
St |
LA A . . 7Y
% 1 2 3 4 st

Fig. 3. The inter-relations between the shear stress © and the longitudinal shear strain 7, of the
incompressible, nonlincar laminate (continuous lines). and the reference linear laminate (short-
dashed lines) for two different values of the longitudinal shear stress 7,0, = 0.5and 7, 7y, = L.
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Fig. 4. The relations between the shear stress © and the corresponding shear strain 7 of the

incompressible, nonlincar laminate (continuous lines), and the reference linear laminate (short-

dashed lines) for three different values of the longitudinal shear stress 1, ©,/ty = 0. f,/t, = 0.5 and
£/t =2.

dashed curves for a linear laminated composite with the same shear moduli as the nonlinear
laminate. Thus. the phases of this lincar reference laminate are similar to those of the
nonlinear one with the only difference that in phase | o, = 2.

Figure 2 shows a plot of the tongitudinal shear stress 7, versus the longitudinal shear
strain 7, for three different values of T (f/t, = 0, 2, 5). We observe that when there is no
preloading of the laminate (f/t, = 0), the behavior of the stress/strain curve of the nonlinear
laminate is initially the same as that of the reference linear laminate (short-dash line) until
phase | yiclds. After yiclding, the two curves diverge with the nonlinear phase controlling
the behavior for large longitudinal shear stresses. That this should be so is scen from the
fact that shear parallel to the layers should be controlled by the less stiff phase (in this case,
the nonlinear phase). The effect of increasing 7 is to saturate the linear range of phase 1,
forcing the cffective stress/strain curve of the laminate to be controlled by the nonhinear
phase even for small values ol the longitudinal shear stresses 7,.

Figure 3 shows a plot of T versus the tongitudinal shear strain 7, for two different
values of the longitudinal shear stress (£,/t, = 0.5, 1), and serves to emphasize the coupling
between the two shear modes. Thus, a small preload in the form of a longitudinal shear
stress £, applied to the nonlincar laminate can lead to large increases in the longitudinal
strain 7, as the other shear stress mode 7 is increased ; in fact, the growth is unbounded and
can be shown to be proportional to (7/7,)"™ ",

T/t 20 v v T
n o N

; HHpl=s
[ : L d¥=02
. + a=3
ISt J
?/ta =05 TIt =
10} 4

. o N e )7/70

0 0.2 04 0.6 08 1 1.2

Fig. s. Thg inter-relations between the longitudinal shear stress 7, and the shear strain 7 of the

incompressible, nonlinear laminate (continuous lines), and the reference linear laminate (short-
dashed lines) for two different values of the stress mode £: /7, = 0.5, and #/t, = 1.

0
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Figure 4 shows a plot of the shear stress T versus the shear strain 7 for three different
values of longitudinal shear stress £, (£, 7, = 0. 0.3, ). We observe that when there 1s no
preloading of the luminate (7, 7, = 0). the behavior of the effective stress strain curve of
the nonlinear laminate is initially the same as that ot the reference hinear laminate (short-
dash line) until phase | yields. After yvielding, however, the two curves diverge with the
linear phase controlling the behavior for large shear stresses 7. In fact, it can be demonstrated
that the slope of the stress strain curve in question reaches an asymptotic value of 2¢' 'y~
(corresponding to a linear Voigt estimate with g — 0} as the shear stress © becomes large.
Evidently. the weaker nonlinear phase is acting as it' it was not present for large enough 1.
The effect of increasing 7, is then to saturate the hinear range of phuse 1, reducing the effect
of the nonlinear phase on the effective stress strain curve ot the composite (the laminate
behaves almost linearly with modulus ¢ g™ tor sufliciently large preload ). That the
nonlinear laminate shoutd be controlled by the stiffer lincar phase for large magnitudes of
the transverse shear stress £, (and fixed longitudinal shear stress ©.) is casy to visualize, but
that exactly the same behavior should be observed for the deviatoric mode £ (the other
component of ) ts perhaps less intuitive. The reason. however, is related to the Poisson
effect. Thus, for example, if the laminate is compressed along the normal direction (which
may seem to be controlled by the less stiff nonlinecar phase), tensile strains are set up in the
plane of the layers. which must be continuous across the phases, thus providing the required
stiffening effect in the normal direction (because the linear phase controls the in-plane
behavior of the laminate).

Figure 5 shows the relation between the longitudinal shear stress mode £, and the
strain mode 7 for different values of the shear stress © (¢, = 0.5, 2). We observe that while
there is significant coupling between the two modes (by comparison with the linear reference
laminate), the coupling is not as significant as in Fig. 3. Thus, the shear strain 7 reaches a
maximum level for a given shear prefoad £ as the longitudinal shear 7, 1y increased. This s
because the nonlincar phase ts dominated by the finear phase in this mode of deformation
as observed previously in connection with Fig. 4. The cffect of increasing preload Tis to
increase (in both absolute and refative terms) the increments in the shear strain 7 with
increasing shear stress 7,

6.2. The alumimanalumina laminated composite

In this subscction, we demonstrate the behavior of a nonlinear, compressible laminated
composite made up of aluminum layers reinforced with layers of alumina. Aluminum is a
ductile material with uniaxial stress;strain curves that can be approximated by a “linear-
plus-power™ law with hardening exponent » varying between 4.2 and 5.8, Thus, we will
assume the following form for the energy--density function of the aluminum layers (phase

1

) ~N

~ i l R
W (1. 00) = j FO U ds + _)’“,(7‘}‘, (+4)

where F'" is the same as in (41), and thus the only difference between (40) and (44) 1s the
compressibility of aluminum accounted for in (44) through the bulk modulus #'"'. Alumina
(phase 2) is a brittle material that behaves in a lincar fashion up to the point of failure. Its
energy -density function is represented by

!

N _ 2 N 45
'V (tc‘am = 5“'(3, o+ -,K(;,ﬂmv (43)

where y** and ~'? denote the shear and bulk moduli of the alumina, respectively.
With this choice of '" and ' (for the behaviors of the two phases). the effective
energy—density function of the composite can be represented in dimensionless form via
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Fig. 6. The relations between the in-plane hydrostatic stress 6, and strain £, of the compressible
laminate (where no other stress modes are present) for three different values of the volume fraction
of the linear phase, ¢,

U(a) G, G, T, t, o, u?

P n P n_ vy 1 M) N
— = Gy— = = =" =y UL A 3 (46)
To7o Oy Og Tg Top 09 H
where G is obtained from (38), 1, = ﬂao. Yo = /360 such that /7, =2u'", and vV, y¥
are the (dimensionless) Poisson's ratios of the two phases defined by

dr) 9,0
0 _ KT =2
Ok 4 2u”

In the results to follow, we will make the following choices (which are representative of the
aluminum/alumina composite) for the material parameters in (46) :

=1 " =6, v" =035 v¥=025andn=>5.

The results are presented in Figs 6-9 in terms of plots of the four transversely isotropic
stress modes versus the corresponding strain modes for three different values of the volume
fraction of alumina ¢ (0.1, 0.25 and 0.5).

Figure 6 shows a plot of the in-plane hydrostatic stress 6, versus the corresponding
hydrostatic strain £,, when all other stress modes vanish, for the three values of the volume

gl S r r T v
L] o
al d¥ =05 ]
d¥ =023
3F J
2F d¥ =01 ]
ut <6
¢ p
V=035
V¥ =025
s -
0 e S . Ulale £ le
0 1 2 3 4 5 °

Fig. 7. The relations between the normal tensile stress &, and strain &, of the compressible laminate
(where no other stress modes are present) for three different values of the volume fraction of the
linear phase, c'?.
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Fig. 8. The relations between the transverse shear stress £, and strain 7» of the compressible luminate
{where no other stress modes are present) for three ditferent values of the volume fraction of the
linear phase. ¢'”.

fraction of alumina ¢”. We observe that the laminate has a linear range with effective
modulus 27 (recall that 1 = 9ap/(3x + 410)) up to yielding of the aluminum phase. However,
the laminate behaves almost lincarly even after yielding with modulus approaching 2¢'7n'?
for large values of ¢,. This behavior is expected on physical grounds due to the fact that the
stitfer material (alumina) should dominate the behavior in tension (compression) parallel to
the layers. The effect of increasing volume fractions of alumina is of course to stiffen the
cffective behavior of the composite.

Figure 7 shows a plot of the normal tensile stress 6, versus the corresponding tensile
strain &,, when all other stress modes vanish, for the three previous values of the volume
fraction of alumina . The structure of the plots is very similar to that of Fig. 6 ; however,
the effective moduli are different. Before phase 1 reaches yielding, the laminate has uniaxial
modulus given by the expression

(*'3’“‘>+ | (3;—";2ﬁ>1
3n+4p/)  F\3x+4u

while after the yielding of phase 1, the modulus for Lirge stress 6, is reduced to the level

0.5 1 up =6 |
Vil =035
V=025
n=5 -
0 " " i 7, /7.,
0 5 10 15 20

Fig. 9. The relations between the longitudinal shear stress 7, and strain §, of the comprcssilblc
laminate {(where no other stress modes are present) for three different values of the volume fraction
of the linear phase, ',



Ductility of laminated materials 2345

1y 4
C(:)n'u)+ ; _ﬁﬁ) .

In this case, it is not evident that the linear phase should govern the effective behavior of
the laminate for large stresses. The reason, however, is the same as discussed in the previous
subsection in connection with Fig. 4 : continuity of the tangential strains across the interfaces
together with the Poisson effect.

Figure 8 shows the corresponding plots for the transverse shear stress 7, versus the
transverse shear strain 7,. when no other stress modes are present, for the three values of
the volume fraction of alumina. In this case, the results are similar to those of Fig. 6 for
clear physical reasons: the stiffer phase controls the behavior of the laminate under trans-
verse shear loading.

Figure 9 shows plots of the longitudinal shear stress 7, versus the corresponding strain
mode 7,. with no other stress modes present. The behavior in this case is dramatically
different, as the study of the corresponding case for the incompressible laminate demon-
strated earlier (Fig. 2). Thus, after an initial linear range before yielding of phase 1, the
weaker nonlinear phase governs the effective behavior of the laminate. In contrast to the
other three modes, we observe that the dependence on the volume fraction of alumina is
fairly weak. so that the three curves (corresponding to different values of ¢!¥) are quite
close to each other.

Clearly, a study of the inter-relations between the different modes would be required
to have a complete picture of the effective behavior of the nonliear compressible laminate.
However, the behavior of these inter-modal relations is similar to those already explored
for the incompressible laminate. Thus, the inter-modes relations that involve the longi-
tudinal shear strain 7, arc of the form of the relations presented in Fig. 3 whilce all other
inter-modal stress/strain refations are in the form of Fig. S.

6.3. The rigid/perfectly plastic laminated composite

In this subscction, we consider the case of an incompressible laminated composite
made up of two rigid/perfectly plastic phases with yield stresses 74 and t§, chosen such
that )" < 4, in given volume fractions ¢!’ and ¢'®. The behavior of the phases may then
be characterized in terms of the convex energy-density functions

0, <1,

(r}

47
@, tc > t() 3 ( )

Y (t) = {

(r =1, 2), where . denotes the effective shear stress. These encrgy functions may be
obtained directly from pure power-law energy functions of the form

Py () = : €00y =) (48)
AEN e B0 ’

in the limit as 7 — 0. Further, these energy functions define “yield functions™ for the phase
materials that may be described in the usual way via

¢"(6) = 1. —15 = 0. (49)

Here, we will proceed formally and make use of expression (28) to determine an
expression for the effective energy function of the laminated material U, from which we
will be able to determine a yield function for the laminated composite ®. For a rigorous
treatment of homogenization theory for rigid/perfectly plastic composites, and in particular
for a discussion concerning the validity of the normality condition for the effective yield
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function of the composite, the reader is referred to Suquet (1985). Because of incom-
pressibility and transverse isotropy, we will find that such a yield function may be rep-
resented as a curve in the (f,. ©)-space. where ¥ = | 'f;+ 3. Thus, application of (28) leads
to the expression

-

0. "ty and 1P < 2
0(6) = min{G(f,.T.w)}. where G = . 50, 51
(a) un G (7, )y v 1 sl op Y > gl (50,54
and where t'"" = N=cPw) F+& and ¢ = ,(l+(‘”w) T .

The above optimization problem for w then reduces to determining all possible com-
binations of ¥ and T, for which U = 0, which in turn defines the yield function for the
composite ®. First. we note that. independent of 7 and . U can only vanish if

.-t < 0. (32)

for otherwise t'" = 7, > t\"". Thus, inequality (52) is a necessary condition for T to vanish.
However, the condmon (52) is not sufficient to ensure that U vanishes since the condition
' < ) may be violated. Thus. assuming that condition (52) is satisfied. we ask the
question of whether there are values of w. depending on 7 and 7,. such that conditions
" < and o < o are satisfied simultancously. The answer is affirmative, provided
that 7 and 7, (for given volume fractions ¢V and ¢'¥') satisfy the condition

- (H\/( (lu) ”%,;;4-(":)\/"f(ri,ﬁ)-j.:%,{. (53)

Thus, conditions (52) and (53) define an effective yield function for the composite, @ = 0,
such that

da) (54

i

(n h
Ty =Ty =Ty .

{f__[(.m N (r.,”) +(":’\/(r'.,:’)3 —fj], i< r‘(,”,
We note that when i = t})"’, the expression above reduces to the von Mises yield criterion.
Plots of the yield surfaces in the (f,, T)-space of applied stresses are given in Figs 10

und 11, Figure 10 shows the exact yield surface @ for the choice of parameters,
o/t =2 and 7 = 0.5. The isotropic Reuss and Voigt (also known as Bishop-Hill
csumatc) bounds for the yield surfaces arc also given for compuarison. We note that the
exact yield surface @ is close to the Voigt upper bounding surface @y for low values of the
longitudinal shear stress (7, < !t}""). and close to the Reuss lower bounding surfuce @y for

fir® 16 v v v ~ r v .
o

08 b T ;

02 v/l =2 ! Co

d¥ =05 A
" " . " . PR tlr(“

0 (]
0 02 04 06 0B t 12 14 16

Fig. (0. Plots of the exact estimate, the anisotropic elliptic estimate of Hill, and the Voigt :md Reuss
isotropic estimates for the effective vield surface of a laminated composite with 2/t =2 and
¢ =05
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Fig. 11. Plots of the exact estimates (continuous lines) and the corresponding anisotropic elliptic
estimates of Hill (dashed lines) for the effective yield surfaces of laminated composites with
/e = 1.25 and three different values of ¢'¥ (0.1, 0.5 and 0.9).

low values of 7. We also include in Fig. 10 an estimate for the yield surface, ®y. which is
based on the approximation of Hill (1951) for slightly anisotropic materials. This approxi-
mate yield surface is given by

7 T
)

by (o) -( gl g2 glny: (t(,

=1 (55)

and we note that it amounts to an clliptic interpolation between the Voigt and Reuss yield
functions.

We observe that for the largely anisotropic case depicted in Fig, 10 (zi?/74" = 2 and
7 = 0.5), Hill's clliptic approximation scverely underestimates the ultimate yicld strength
of the laminated composite for combined longitudinal and transverse loading. Figure 11
shows plots of the exuact yield surfaces (continuous lines) and Hill's approximate yicld
surfaces (dashed lines) for a laminated composite with slight anisotropy (t4”/t)") = 1.25)
and three values of ¢ (0.1, 0.5 and 0.9). For all values of ¢, the exact yield criterion
bounds a larger region of the (£, ©)-plane than the Hill approximate criterion, and the
two curves are only in good agreement for small volume fractions of the stronger phase
(' =0.1).

7. CLOSURE

In this paper, we have described the application of a new variational method, developed
by Ponte Castaieda (1991a, 1992), to determine the effective constitutive behavior of
laminated composites with elastoplastic phases in prescribed volume fractions. It constitutes
one of the first applications of the method to composite materials with anisotropic sym-
metrics [see also Ponte Castafieda (1992) and deBotton and Ponte Castaiieda (1992) for
the corresponding results for fiber-reinforced materials]. Because of the simplicity of the
laminated microstructure, allowing for the dctermination of the exacr effective properties
of laminated composites, this work is of interest—not only on account of its practical
significance—but also because it provides a simple case to evaluate the power of the new
method. Additionally, the results of this paper suggest that when dealing with strongly
anisotropic matcrials, it is not enough to consider the behavior of the composite under
special loading conditions, since the behavior of the composite under different types of
loading conditions may be dramatically different. Thus, we found that nonlinearity high-
lighted the differences in the constitutive response of laminated composites under transverse
and longitudinal shear loading. Further, this study also underlined the significant coupling
that may arise between different loading modes in nonlinear anisotropic composites. Thus,
it was found that a small fixed preload of a laminate in the longitudinal direction leads to
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continued increase of the longitudinal shear strain as the level of transverse sheur stress (for
example) is increased. It is anticipated that the features uncovered by the present analysis
of nonlinear laminated composites will also be important in other types of nonlineur
composites with anisotropic symmetries. such as the practically important class of fiber-
reinforced matenals.
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APPENDIX A: ON THE CHARACTERIZATION OF TRANSVERSELY [SOTROPIC
MATERIALS

The purpose of this appendix is to gather some results relevant to the analysis of linearly elastic materials
with trunsversely isotropic symmetry. These results are used extensively throughout the body of the puper in the
development of effective stress;strain relations for nonlinear laminated composites. The emphasis of this section
is on representations for the transversely isoropic invariants of the stress and strain tensors. The reason is that
nonlinear transversely 1sotropic materials are most efficiently characterized in terms of energyv-density functions
depending on these invariants.

A1 Isotropic invariants

[t is well Known that there are three isotropic invartants for a symmetric, second-order tensor. However, only
two of these—those that are of quadratic order, or less—are relevaat to lineuarly elastic behavior. These invariants
may be expressed [see. for example. Walpole (1981)] in terms of two fourth-order projection tensors J and K. such
that I = J+ K. JJ = J. KK = K and JK = 0. Their Cartesian components are given by

S = 0,00 K= Uud, 40,0, — 10,04, (Al)

where d,, is the Kronecker delta symbol. Then, in terms of these projection tensors, we detine two isotropic
invariants of the stress tensor via
O = o, and 1) = K 0,00 (A2)
catled the hydrostatic (mean) stress, and the effective shear stress, respectively. We also define the hydrostatic
strain &, and the effective shear strain y, by relations completely anatogous to (A2).
it is important to note that the elasticity tensor L of an isotropic, linearly elastic matertal admits a spectral
decomposition

L= 3nd +2uK, {AD)

wihere J and K play the role of the cigenprojections, and the bulk and shear modult of the material, x and g, are
the corresponding cigenvalues. As we will see next, the situation for transversely isotropic materiads is difterent,

A2, Transversely isotropic imariantys

There are in general five transversely isotropic invariants of a symmetric, second-order tensor (Spencer, 1971).
However, only four of these invariants are lincar, or quadratic, in order. They may be represented in terms of the
four projections tensors [see Walpole (1981)] EPLERL EF and EY, satisfying the relations EVEW = el
EVEM <0, p £ g; and EM e PR ENE EM = [ The components of these four projections tensors are given
respectively by

i

EUL =\, B

EY), = u, 2,

EVL = WP+ BB =B, B,

EL = WBuay+ Py + B +Bi20). {(Ad)

where 2, = nn, and i, = 8, —nn,, with n denoting the axis of transverse isotropy. Then, the four transversely
isotropic invitriants of the stress tensor @ may be expressed in the forms

—1pm
a, = 1Eay, = Yo B, (Mo +ait.

- fl = f ]
a, = E 0y =0,%,, (LFITD

Tt ¥ = ! 2 2
Iy = :”.,Esll/”u = :[”./"uﬁmﬁu“5(”,//‘/1) l. {”;z‘*'i(ﬂn -03)° .

2 t 2 2 2
I, = !”A/EE-/‘LG'H = [”.,”L.zu —(a,2,) I {(”n""‘h;)}. (AS)

which correspond physically to the in-plune hydrostatic stress, the normal tensile stress, the (in-plane) transverse
shear stress, and the (anti-plane) longitudinal shear stress (given in brackets are the corresponding representations
for a choice of m aligned with the 3-direction). Analogous relations apply for the transversely isotropic invariants
of the strain tensor &, denoted respectively e, &, 7o and y,. We also note for latter reference that the following
two rlclulions hold between the transversely isotropic invariants of (AS5) and the isotropic invariants of (A2),
namely,

x

Tn = (20,+0,), i =1l+10+ (o, ~0,)% (A6)

Contrary to the situation for isotropic materials. the above four projection tensors are not the cigentensors
of the spectral decomposition of an arbitrary transversely isotropic material (Mchrabadi and Cowin, 1990). Such
cigentensors would unfortunately involve the material moduli. Therefore. it is necessary to introduce {sce Walpole
(1981)] two other tensors. that are nat projections, E™ and E', with components

SAS 29:19-C
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Ef;, = 2, Bu. E:[,ol = ﬂ.,iw (A7)

Then. the elasticity tensor L of an arbitrary transversely isotropic material may be expressed in terms of these six
tensors. [t is worth mentioning that the above tensors satisfy the relation

J = EV+ EW 4 (EW + EY), (A8)
and that we can additionally define for later reference an additional tensor E’ such that
E = EM+EY-K. (A9)
This last tensor is a projection tensor, which is orthogonal to EMY and E™.
Finally, we remark that the energy density function of a transversely isotropic. linearly elastic material may
be represented in the form

Ule) = y(a,.0,.1,. T,). (A10)

where ¢ is a quadratic function. Then. the relation between the transversely isotropic stress and strain invariants
is given by

10y oY I &y I ¢y
%=ia—r'€n=‘;&—"-/p=§(§; and ‘/..‘—“;_5;:- (AlD

A.3. Incompressible, transversely isotropic invariants

For incompressible, transversely isotropic materials, it suffices to consider the three invanants of order less
than quadratic on the space of traceless, symmetric, second-order tensors. These may be obtained in terms of the
three orthogonal projection tensors ENY, E and E, defined in the previous subscction. Thus, the incompressible,
transversely isotropic invariants of the stress tensors o arc 1, 7, and the deviatoric shear stress

|
=, (6, -a,), (A12)

corresponding to the three above projections, respectively. We note further that from (A6), we have the following
identity relating  the effective shear stress and  the  incompressible, transversely isotropic  invariants,
t} =t + 1t} +1]. The corresponding strain invariants are denoted by v, 7, and 7.

Finally, we note that the elasticity tensor L of an incompressible, transversely isotropie, lincarly clastic
material admits a spectral decomposition of the form

Lo= 20 BNV 4 20 BN 424 F, (AL}
p

where u,, g, gy, are the three shear moduli that suffice to characterize the behavior of such a material [see Lipton
(1991a))].

APPENDIX B: A USEFUL IDENTITY

In this appendix, we demonstrate the following identity, which is used repeatedly in the body of the paper,
namely

l . " cl" )
;= H‘lln Z ;m(w"’)‘ . (Bl)

wdel {7

where the variables 2 > 0 (r = I,...,n) arc constant, and where the variables ' (r = I,... . n) are subject to
the constraint @ = 1.
We begin by letting ¢ be the function defined by

" R1]

gy =Y im» ()2, (B2)

r- |

The choice of the set, ! = 2"/, satisfies the constraint and is such that g(«'") = 1/2. Consider next a second,

- r 7| - 7|
arbitrary sct, distinct from the first sct, &' (r = 1,....n), such that w = |, and let 0 = 5" —~ ", Then,
substitution of this second sct into (B2) lcads to

“(r} o Aty 2 z (rry 2 e 2 () B3
gy = Z:F;;((l) Y= sz((u )'+z;‘—,—,(0‘ ) > gl{w'). (B3)
remi e | |

where we have used the fact that § = 0. Hence, identity (B1) is demonstrated. In the body of the paper, we replace
w" by (1 —w"), with an appropriate modification for the constraint.
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APPENDIX C: A SIMPLIFIED EXPRESSION FOR THE EFFCTIVE STRESS,STRAIN
RELATIONS

Consider the following form for the effective energy function (26} of the incompressible laminated composite

0(5) = mm {z c"‘«#”'(r“’)} {Ch)
N et { o

where

= @+ D —0V) +12

As shown in the body of the paper, we can eliminate the constraint & = 0 by letting

0}'") = _,‘_ Z cmw(:l (CZ)

ral

and rewriting (C1) in terms of the n— [ optimization variables o (r = 1,...,n—1) via

L
(7(5) = m‘l’n { Z AN (™ +C(n).{,(nl(r(n))}‘ fok))
'elj:’...n— =t
where the variables ™ (s = 1,..., n—1) are the same as before, but on the other hand

- -
™= \/(r,.%—r‘,)(lﬂi- o Z s )“’) +15.
t=i

Then, the n— | optimization conditions of (C3) are given by the relations
l 1y tr) (n l (n)y g o in) l & (e (e}
_F’T(w(')(t (Il =—e )+-t-m(¢1 )™ l+‘::(;)"§'(‘ [0 =0, (r=1,....,n=1). (C4)

If we now denote the optimal variables o™, satisfying (C4), by & (r = 1,...,n—1), the effective ¢nergy
function of the incompressible kuminate may then be written in the form

nol
0(&, = Z cmww(t—m)+c(n»¢(n»(fin))_ (CS)

where

= ™ = @) and = \/(rpﬂé)(w = Z ¢ ">>

It follows that effective stress/strain relutions of the laminated composite may be computed from the relations

B LA o,
z==}_: (dr")(r")[(l— “)(T'a—&"+u—0§)+n ]+

da

sy i o et 0f, O\ | O,
(,.,('l’“)(.(')[(I"'T,T,ZCU “)(tp ‘+t“-');:>+r"ﬁg -

(ﬂ
+ Z g +fc) 3z { E o Y (E - u’}"‘)+—~—(¢""’) (f"”)(!+ - ZC"’ "')]- (C6)

vl 1w

We note that each of the terms in the last summation of (C6) is identical to zero by virtue of the optimizations
conditions (C4). Thus, in the computation of the cffective stress/strain relations, we may regard the optimizations
variables as constants as far as derivatives with respect to  are concerned, to obtain the final romult

s . vl . 0F, % _ 0F,
-1 f}~ W) (f‘")[(l ~a ’)'(rpg;; + ,?;f)“" I%] m’

where /" is defined via the relation (C2) in terms of the other &' (r = [,... . n—1).

It can be shown that an analogous result may be obtained for the nonlinear compressible composite with

effective energy function & given by (37). In fact, we may write the effective stress/strain relations for the nonlinear
compressible laminate in the form
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= \:‘ i Al S ain R
E= ¢ 7;;’“'(5, N N (C8)
0 sir) )

where 77, and 4} are evaluated from (36) at the optimal values of ", und o). denoted by 3.7, and ;.
respectively. Here, the derivatives with respect to the average stress ¢ are evaluated with o3}, and oy fixed.

APPENDIX D: AN ALTERNATIVE DERIVATION OF EXPRESSION (37)

Having obtained expressions (35) and (37) for the ctfective energy functions of the linear and nonlinear
laminated composites ) and C. respectively. we note that the form of these expressions is reminiscent of the type
of result that one would expect from direct utilization of the principle of minimum complementary energy (4). In
this appendix, we briefly show that results (35) and (37) for T, and C. respectively. can indeed be alternatively
obtained from the principle of minimum complementary energy. [tis important to emphasize, however, that while
the derivations given in the body of the paper result from straightforward computations, the present derivations
based on the principle of minimum complementary energy rely more directly on the physics of the problem, and
were moticated by the prior derivations. Additionally. the case of a laminated composite is a very special
microstructure ; in general, we do nzof expect that we will be able to use the approach of this appendix for nonlincar
composites with more general anisotropic microstructures.

We begin with the denivation of the linear result (33). We have alrcady mentioned that the stress field within
the laminated composite is piccewise constant. t.e. of the form

v

" mat
1

a
1]
\[/]:

where o' corresponds to the constant stress ficld in phase r. The problem then reduces to that of finding these
unknown phase stresses a'”', together with the corresponding constant strain ficlds £7 (related to the stresses by
the phase constitutive refations), and satistying the conditions of continuity of the traction stresses and tangential
strains across the interfaces between the phases, as well as the averaging conditions stated in Section 2,

In this connection, the interfor and exterior projection operators of Pl (1972, 1983) F = E'M+ E'Y and
E = E'T R EN (refer to Appendix A), respectively, turn out to be useful because they allow the decomposition of
any symunetric, second-order tensor mto its tangential (intertor) and traction (exterior) components (with reference
to a boundary with normal n). Thus, the tangential components of the strain (which must be continuous across
interfi®ial boundaries on the liminated composite) are given by Fe, and, correspondingly, the traction components
ol the stress (which must also be continuous across the interfactal boundaries) are given by Ea. Alternatively, we
may state that EXe, EMe and K%, EHe must also be continuous across such boundarics.

Next, we apply the above results to the laminated composite, for which the intertacial boundaries are all
perpendicular to a fixed vector n. Since the traction stresses must be continuous from phase to phase, we have
that

EFle” = EYé, and E'Ye = KNG, (D1

where we have additionally made use of the average stress condition given in Scection 2. We continue by noting
that for an isotropic material Gas are all the phases in the our laminate), E/Me' = 207 E! Ve within each linear
phase, and therefore for an isotropic phase the E'Y projection of the stress tensor must have the sume direction
in all phases. Thus, applying the averaging condition for the stresses, we arrive at

Ela = (1 =)k "a, (D2

where the variables ¢! must satisfy the condition that &, = 0. Additionally, since the EM-projection is one-

dimensional, it follows that the E'-projections of the stress tensor must also be parallel from phase to phase.
Therefore, upplying the averaging condition for the stresses, we have that

Ellg” = (1 =ik Vg, (DY
where the variables ! must satisfy the condition that &, = 0. We note, however, that if g = 0 (or. equivalently,
if @, = 0), the above result does not hold, because in this case the corresponding projections of the stress in the
phases need not vanish (only their average needs o vanish).

Applying the results of Appendix A [in particular, (A6)]. we conclude that the isotropic invariants of the
stress tensor within cach phase t” and 6% (on which the energy - density functions of each isotropic phase depend)
are precisely those given by relations (36). Therefore, it follows from the principle of minimum complcmcnlgry
energy—by minimizing over the sct of admissible stresses (i.c. over the optimizing variables o and ol subject
to the constraints @, = 0 and ,, = 0)—that the effective energy function C., of the lincar composite is indeed
given by expression (35).

For the nonlincar laminated composite, we observe that the same analysis given above would also »york.
leading to expression (37) for £. The only modification that is required in this analysis is that for a nonlincar
isotropic phase (say phase r), the relation E!a = 2;E!e" would not hold. but it can be casily shown that
for the nonlinear isotropic material of the type considercd in this work. the conclusion (D2) would still hold. and
hence the final form for O would be the same as that for the lincar laminated composite O,

We conclude this appendix by stating an alternative form of (33) and (37) that works even when 4, = 0. This
is accomplished by redefining the optimizing variables e in terms of the new variables



Ductility of laminated materials 2353
. g w46
@y = LT (D4)
G,—G,

where we now need to have §,—6, # 0. In terms of the new variables &} (the variables ! do not change).
relation (37) is expressed in the form

”

(_.'(&) = Tm {V‘ L’“'lﬂm(fr'.é:')}. (DS)
RO

G, =y - [}

where

= S —ol R+ + 6, — ) —6)] and 69 = &, + HF, -G ) — ). (D6)

Note that when 6, = 6, = 0. we are guaranteed that 0, = 67’ = 0 in each phase. and then both forms are equally

valid.



